Experimental Characterization of the static behaviour of microcatntilevers electrostatically actuated

نویسندگان

  • Alberto Ballestra
  • Eugenio Brusa
  • Mircea Gh. Munteanu
  • Aurelio Somà
چکیده

This paper concerns the experimental validation of some mathematical models previously developed by the authors, to predict the static behaviour of microelectrostatic actuators, basically free-clamped microbeams. This layout is currently used in RF-MEMS design operation or even in material testing at microscale. The analysis investigates preliminarily the static behaviour of a set of microcantilevers bending in-plane. This investigation is aimed to distinguish the geometrical linear behaviour, exhibited under small displacement assumption, from the geometrical nonlinearity, caused by large deflection. The applied electromechanical force, which nonlinearly depends on displacement, charge and voltage, is predicted by a coupled-field approach, based on numerical methods and herewith experimentally validated, by means of a Fogale Zoomsurf 3D. Model performance is evaluated on pull-in prediction and on the curve displacement vs. voltage. In fact, FEM nonlinear solution performed by a coupled-field approach, available on commercial codes, and by a FEM non-incremental approach are compared with linear solution, for different values of the design parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping

In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. Squeeze film damping is modeled using nonli...

متن کامل

Mechanical Behavior of an Electrostatically-Actuated Microbeam under Mechanical Shock

In this paper static and dynamic responses of a fixed-fixed microbeam to electrostatic force and mechanical shock for different cases have been studied. The governing equations whose solution holds the answer to all our questions about the mechanical behavior is the nonlinear elasto-electrostatic equations. Due to the nonlinearity and complexity of the derived equations analytical solution are ...

متن کامل

On the Stability of an Electrostatically-Actuated Functionally Graded Magneto-Electro-Elastic Micro-Beams Under Magneto-Electric Conditions

In this paper, the stability of a functionally graded magneto-electro-elastic (FG-MEE) micro-beam under actuation of electrostatic pressure is studied. For this purpose Euler-Bernoulli beam theory and constitutive relations for magneto-electro-elastic (MEE) materials have been used. We have supposed that material properties vary exponentially along the thickness direction of the micro-beam. Gov...

متن کامل

Application of Piezoelectric and Functionally Graded Materials in Designing Electrostatically Actuated Micro Switches

In this research, a functionally graded microbeam bonded with piezoelectric layers is analyzed under electric force. Static and dynamic instability due to the electric actuation is studied because of its importance in micro electro mechanical systems, especially in micro switches. In order to prevent pull-in instability, two piezoelectric layers are used as sensor and actuator. A current amplif...

متن کامل

A Numerical Improvement in Analyzing the Dynamic Characteristics of an Electrostatically Actuated Micro-beam in Fluid Loading with Free Boundary Approach

Electrostatically actuated microbeams have been studied by many researchers in the last few years. The aim of this study is to present an improved numerical analysis of the dynamic instability of a cantilever microbeam immersed in an incompressible viscous fluid. The finite element method is used for solving the vibrational equation of the microbeam and the potential functions of the fluids in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0802.3097  شماره 

صفحات  -

تاریخ انتشار 2007